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Abstract
The random map model is a deterministic dynamical system in a finite phase
space with n points. The map that establishes the dynamics of the system is
constructed by randomly choosing, for every point, another one as its image.
We derive here explicit formulae for the statistical distribution of the number of
attractors in the system. As in related results, the number of operations involved
by our formulae increases exponentially with n; therefore, they are not directly
applicable to study the behaviour of systems where n is large. However, our
formulae can be used to derive useful asymptotic expressions, as we show.

PACS numbers: 89.75.+k, 45.05.+x

1. Introduction

Since the 1970s the random map model has attracted the attention of physicists [1, 2]. Indeed, in
1987 Derrida and Flyvbjerg showed that the random map model is equivalent to the Kauffman
model of cellular automata when the number of connections among the automata goes to
infinity [3, 4]. This enlarged its application in the realm of theoretical biology, disordered
systems and cellular automata, for possible approaches of DNA replication, cell differentiation
and evolution theory [1].

On the other hand, half a century ago, some mathematicians approached the random
map model in the context of random graphs. First, in 1953, Metropolis and Ulam posed the
problem of determining the number �(n) of expected connected components (i.e., attractors)
in random graphs with n nodes [5]; at the time, �(n) was estimated to be of order log n. Only
one year later, Kruskal elegantly solved the problem obtaining an exact formula together with
its corresponding asymptotic behaviour [6]:

�(n) =
n∑

k=1

n!

(n − k)!knk
(1.1)
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�(n) ≈ 1
2 (ln 2n + γ ) + ε for n � 1 (1.2)

where ε vanishes for n → ∞, and γ is the Euler–Mascheroni constant.
The statistical distribution of the number of connected components was addressed both

by Rubin and Sitgreaves [7], and Folkert [8] in his PhD thesis under the supervision of Leo
Katz. Unfortunately, these two practically out of reach works were never published, despite
their relevance and an offer by Katz to do so [9]. Later, Harris partially reviewed and enlarged
these results, proposing a new combinatorial expression for the distribution of connected
components, as well as the complete solution of the simpler case in which the random map
is one to one [10]. The mathematical expressions of a general random map found by Folkert
and Harris, however correct, are based on constrained sums with a number of terms of order
en, and involve Stirling numbers of the first kind [11–13]. Therefore, unfortunately, their
straightforward use in physics or biology appears quite limited (for example, it is typical to
deal with n ∼ 2100 in models such as those of cellular automata).

In spite of its importance, and as far as we know, a study of the variance for the distribution
of connected components has not yet been undertaken.

In this paper we propose a still new combinatorial formula—equivalent to the previous
ones, of course—for the statistical distribution of the number of connected components. As
in earlier results, it also relies on a constrained sum, and the involved computational effort
increases exponentially with n. Nevertheless, it has the advantage of allowing us the derivation
of the long-needed asymptotic formula for the statistical distribution. Furthermore, we easily
deduce from it asymptotic formulae for the corresponding average and variance.

The paper is organized as follows. Section 2 is devoted to the main definitions of the
random map model, and to settle our conventions. Then, in section 3, we determine an exact
combinatorial expression for the statistical distribution of the number of connected components
in the model. The corresponding asymptotic formula for this distribution is derived in section 4,
as well as asymptotic formulae for the average and the variance for the number of connected
components. Finally, we present our conclusions in section 5.

2. The random map model and functional graphs

Let � = {1, 2, . . . , n} be a set of n points. To each point in � assign at random one point in
� with uniform probability distribution, thus defining a function f : � → �. In this way a
dynamical system has been established on the so-called phase space � through the iterations
of f ; this is the random map model [3, 4].

Since � is finite, every orbit of f will eventually end in a periodic attractor, and several
questions are in order. For example, what is the expected number of attractors in the system?
Which is the statistical distribution of the number of attractors? How large is the dispersion
of the distribution? Here, we answer these questions starting from combinatorial arguments.

For each function f on � define a functional graph whose nodes are precisely the
elements of �; moreover, if f (i) = j then draw a directed link from node i to node j , and
whenever f (i) = i a loop on node i is drawn. As an example, figure 1 shows a functional
graph with three connected components (i.e., three attractors) in a set with n = 11.

Note that each function f on � (or functional graph) can be represented by an n × n

binary matrix M = {Mij }, where Mij = 1 whenever f (i) = j and Mij = 0 otherwise. Every
row of matrix M has n − 1 zeros and one ‘1’. Clearly, there exist nn such matrices, and thus
nn is the number of functions f that can be defined on �, as well as the number of distinct
functional graphs on n nodes.
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Figure 1. A functional graph with three connected components for n = 11.

3. The distribution of connected components

What is the number an of connected functional graphs (i.e., having precisely one connected
component) that can be found among the nn functional graphs on n nodes? Through clever
combinatorial arguments Katz [9] obtained

an = (n − 1)!
n−1∑
k=0

nk

k!
(3.1)

and showed that, for n � 1, this figure grows asymptotically as

an ≈ nn

√
π

2n

(
1 + O

(
1

n

))
. (3.2)

Using equation (3.1) we derive now a new expression for the statistical distribution of the
number of connected components in functional graphs. Consider first a partition P of �, in k
disjoint subsets �1, . . . , �k , with n1, . . . , nk points, respectively. Then

k∑
j=1

nj = n with 1 � nj � n for j = 1, . . . , k. (3.3a)

Obviously
∏k

j=1 anj
is the number of functional graphs G with k connected components, such

that the subset �j defines a connected component of G, for j = 1, . . . , k. Moreover, for given
integers n1, . . . , nk , satisfying equation (3.3a), the multinomial coefficient

(
n

n1,...,nk

) = n!
n1!···nk!

yields the number of distinct ways we can distribute n objects in distinguishable boxes
B1, . . . , Bk , of sizes n1, . . . , nk , respectively [11, 13]. This leads to

1

k!

∑
{n1,...,nk}′

(
n

n1, . . . , nk

) k∏
j=1

anj

as the number of functional graphs with k connected components, where {n1, . . . , nk}′ means
that the sum is over all vectors (n1, . . . , nk) satisfying equation (3.3a), and the factor 1

k!
accounts for the unavoidable repetitions incurred by our above assumption of ‘distinguishable
boxes’.

Therefore, for k = 1, . . . , n, the distribution for the number of connected components
can be expressed as

ρn(k) = 1

nnk!

∑
{n1,...,nk}′

(
n

n1, . . . , nk

) k∏
j=1

anj
. (3.3b)
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It is not difficult to see that the sum in equation (3.3b) has as many as
(
n−1
k−1

)
terms [13], a

figure growing exponentially with n when k ∼ n
2 . This fact dooms to failure any numerical

application of equation (3.3b) as it stands, and hinders further analytical work.
The approaches of Folkert and Harris lead to increasing complications. The former yields

[8, 10]

ρn(k) = 1

nn

n∑
µ=k

S(k)
µ

µ!

∑
{n1,...,nµ}′′

(
n

n1, . . . , nµ

)
n

n1
1 · · · nnµ

µ (3.4a)

where S(k)
µ are the Stirling numbers of the first kind [11–13] (see the appendix), and

{n1, . . . , nµ}′′ means that the sum is over all vectors n1, . . . , nµ, constrained by
µ∑

j=1

nj = n with 1 � nj � n. (3.4b)

Harris managed to propose [10]

ρn(k) = n!

nnk!

n∑
µ=k

S(k)
µ

∑
{n1,...,nn}′′′

1

n1!, . . . , nn!

(
11

1!

)n1 (
22

2!

)n2

. . .

(
nn

n!

)nn

(3.5a)

in which {n1, . . . , nn}′′′ means that the sum is over all vectors n1, . . . , nn, constrained by
n∑

j=1

nj = µ and
n∑

j=1

jnj = n with 0 � nj � n. (3.5b)

Expressions (3.4) and (3.5) appear more difficult to handle than equation (3.3) because of the
added extra terms via the summation involving Stirling numbers.

To our knowledge, the statistical moments of the distribution for the number of connected
components have not yet been obtained in closed form. Furthermore, the exact calculation
performed by Kruskal for the expected number of attractors (1.1) is not derived from a
distribution (see [6]). For application purposes (n � 1) it is then worthwhile to derive
manageable asymptotic formulae for ρn(k); this is the subject of the next section.

4. Asymptotic expressions

Let us start by defining

βm = 2 e−m am

(m − 1)!
(4.1)

and

αm = 1 − βm. (4.2)

Due to the asymptotic relation (3.2) it happens that

βm = 1 + O
(

1

m

)
for m � 1 (4.3a)

and

αm = O
(

1

m

)
for m � 1. (4.3b)

Now, express equation (3.3b) in terms of βm and use equation (3.3a) to obtain

ρn(k) = n! en

nnk!2k

∑
{n1,...,nk}′

k∏
j=1

βnj

nj

.
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Constraint (3.3a) can be broken by introducing a Kronecker delta inside the summation. Using
the integral representation

δn,m = 1

2π i

∮



zm

zn+1
dz

where 
 is any closed contour in the complex plane of z such that the origin is inside, we
return to the expression for ρn(k) to obtain

ρn(k) = n! en

nnk!2k2π i

∮



dz

zn+1
gk(z)

with a modicum of algebra, where

gk(z) = [ϕp(z)]k with ϕp(z) =
p∑

m=1

βm

m
zm and p � n. (4.4a)

Since gk(z) is an analytical function, we can apply the Cauchy integral theorem to find

ρn(k) = en

nnk!2k
g

(n)

k (0) (4.4b)

as an alternative way to compute ρn(k).
The computation of equation (4.4) may be as difficult as that of equation (3.3); however,

the former is manageable for n � 1, as we shall see. First note that equation (4.4b) does not
depend on the particular value we give to p in equation (4.4a), as long as p � n, a feature
that we shall use to our convenience. Taking p = n in equation (4.4a), gk(z) becomes a
polynomial of degree nk, and its nth derivative may be calculated in terms of finite differences
with the help of Stirling numbers (see formula (A.6) in the appendix), obtaining

g
(n)

k (0) = n!
nk∑

r=n

S(n)
r

r!
�rgk(0) (4.5a)

where S(n)
r are the Stirling numbers of the first kind, and

�rgk(0) =
r∑

m=1

(−1)r−m

(
r

m

)
gk(m). (4.5b)

Now we provide asymptotic approximations for ϕp(z) in equation (4.4a) with p = n and
n � 1. Consider first |z| > 1, and note that, due to equation (4.3),

ϕn(z) =
n∑

k=1

βk

k
zk ≈

n∑
k=1

1

k
zk

(
1 + O

(
1

n

))
.

Now, the Euler–Maclaurin formula states [11, 14]
n∑

k=1

f (k) ≈
∫ n

1
f (x) dx +

1

2
(f (n) + f (1)) +

∞∑
k=1

B2k

(2k)!
(f (2k−1)(n) − f (2k−1)(1)) (4.6a)

where f (x) is a C∞ function over the interval [1, n], and Bk are the Bernoulli numbers defined
by the generating function

t

et − 1
=

∞∑
k=0

Bk

k!
tk for |t| < 2π (4.6b)

with B2k+1 = 0, for k = 1, 2, . . . .
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Let us take f (x) = zx

x
with |z| > 1, and substitute in equation (4.6a) obtaining

n∑
k=1

βk

k
zk ≈ zn

n

[
1

ln z
+

1

2
+

∞∑
k=1

B2k

(2k)!
(ln z)2k−1

] (
1 + O

(
1

n

))
.

Using equation (4.6b) yields
n∑

k=1

βk

k
zk ≈ z

z − 1

zn

n

(
1 + O

(
1

n

))
for 1 < |z| < e2π

which can be continued analytically for any |z| > 1, thus obtaining

ϕn(z) =
n∑

m=1

βm

m
zm ≈ z

z − 1

zn

n
ζn for |z| > 1 (4.7a)

where

ζn = 1 + O
(

1

n

)
. (4.7b)

Instead, for z = 1, clearly

ϕn(1) =
n∑

m=1

βm

m
≈ (ln n + γ − τn)ηn (4.7c)

where

ηn = 1 + O
(

1

n ln n

)
(4.7d )

τn =
n∑

m=1

αm

m
(4.7e)

and γ = 0.577 215 66 . . . is the Euler–Mascheroni constant. Note that, due to equation (4.3b),
when n → ∞ in equation (4.7e), the limit τ exists. Substituting equations (4.7a) and (4.7b)
into equation (4.4a), expanding then in Taylor series the term z

z−1 for |z| > 1, and cutting the
series beyond order nk we come to

gk(z) ≈ znk

nk
ζ k
n

nk∑
m=0

(k)m

m!

1

zm

(
1 + O

(
1

znk

))
for |z| > 1 (4.8a)

with

(k)m = k(k + 1) · · · (k + m − 1) = 
(k + m)


(k)
.

While substituting equations (4.7c)–(4.7e) into equation (4.4a) gives us

gk(1) ≈ (ln n + γ − τn)
kηk

n. (4.8b)

We replace equation (4.8) into equation (4.5b) to obtain

�rgk(0) ≈ (−1)r−1r
[
gk(1) − λ(k)

n

]
+

r!

nk
ζ k
n

nk∑
l=0

(k)l

l!
T (r)

nk−l (4.9)

where we have used equation (A.4) to introduce the Stirling numbers of the second kind T (l)
p ,

and

λ(k)
n ≡ ζ k

n

nk

nk∑
l=0

(k)l

l!
.
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The summation for λ(k)
n can be found in summation tables yielding [15]

nk∑
l=0

(k)l

l!
= [k(n + 1)]!

k!(nk)!
.

Next, applying Stirling’s approximation (s! ≈ √
2πssse−s for s � 1) to the factorials for

n � 1, we find λ ∼ ek, while gk(1) ≈ ek{ln[ln n+γ−τn]+ln ηn}; thus, λ is exponentially small as
compared to gk(1), and can be neglected in equation (4.9). Replacing equation (4.9) back into
equation (4.5a), using properties (A.5), and substituting in equation (4.4b), we find for the
asymptotic distribution of the number of attractors

ρn(k) ≈
√

2πn

k!2k
gk(1)

nk∑
l=n

(−1)l−1

(l − 1)!
S(n)

k + Nn(k) (4.10)

where

Nn(k) =
√

2πn

k!2k

1

nk
ζ k
n

(k)[n(k−1)]

[n(k − 1)]!
. (4.11)

We show now that Nn(k) is a null term, that is to say

lim
n→∞

n∑
k=1

kmNn(k) = 0 (4.12)

for any m � 0, and therefore it does not contribute to the averages taken with ρn(k), for
n � 1. First note that Nn(k) ∼ 1√

n
for any k, so that in the summation (4.12) the terms with

k ∼ O(1) do not contribute. Hence, we can make the approximation for n � 1 and k � 1 in
equation (4.11), and calculate equation (4.12) with it, obtaining

Nn(k) ≈ e−(1+ 1
2n

)

√
n

1

k!

[
1

2
ζne1+ 1

2n

]k

.

Since
∞∑

k=1

km xk

k!
= Pm(x) ex

where Pm(x) is a polynomial in x of degree m, we have
n∑

k=1

kmNn(k) ≈ e−(1+ 1
2n

)

√
n

Pm

(
1

2
ζn e1+ 1

2n

)
exp

(
1

2
ζn e1+ 1

2n

)

and thus the expression goes to zero as 1√
n

, which proves equation (4.12).
Then, (4.10) can be expressed very simply in terms of Stirling numbers of the first kind

by noting the following. Let us take for a moment αm = 0 in equation (4.4a), and also set
p = ∞ with |z| < 1 (so the infinite sum converges), obtaining

g̃k(z) =
( ∞∑

m=1

1

m
zm

)k

= {− ln(1 − z)}k

where the tilde indicates that we have set αm = 0. Using equation (A.2) and substituting in
equation (4.4b) we arrive to

ρ̃n(k) = en

nn2k
(−1)n−kS(k)

n .
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Comparing with equation (4.10), we obtain, up to the null term, that

ρn(k) ≈ en

nn
(−1)n−kS(k)

n

(µn

2

)k

(4.13a)

where

µn = 1 − τn

γ + ln n
. (4.13b)

Since ρn(k) is a statistical distribution,

lim
n→∞

n∑
k=1

ρn(k) = 1.

This allows us to compute τ = limn→∞ τn in equation (4.13b), by using property (A.1) of
Stirling numbers, giving

τ = ln 2. (4.13c)

We can replace equation (4.13c) back into equations (4.13a) and (4.13b), yielding an error
of order O(1/ ln n), for 1 � k � n. So we have, for the asymptotic approximation of the
distribution of the number of attractors, the following expression

ρn(k) ≈ en

nn
(−1)n−kS(k)

n

(µ

2

)k
(

1 + O
(

1

ln n

))
(4.14a)

where

µ = 1 − ln 2

ln n
. (4.14b)

Now we can use equation (4.14) to calculate averages. Using expression (A.3), we have

�(n) ≈ 1

2

(
ln 2n + γ + O

(
1

ln n

))
(4.15)

for the average number of attractors �(n), which coincides, as expected, with Kruskal
asymptotic approximation (1.2). The variance can also be computed by using the derivative
of (A.3)

σ 2 ≈ �(n)

(
1 + O

(
1

ln n

))
(4.16)

which is a new result.

5. Conclusion

We have proposed a new and simpler expression for the distribution of the number of attractors
in the random map model (equation (3.3)). The number of operations involved for the
numerical evaluation of the distribution grows exponentially with n, thus making expression
(3.3) useless for direct calculations for n � 1. To overcome this difficulty, however, we have
derived an asymptotic formula (equation (4.14)), from which we directly deduced asymptotic
values both for the average number of attractors and for its variance (equations (4.15) and
(4.16), respectively).

In the random map model, additional statistical figures are of interest, among which are
the average attractor size, the average period (or average length) of the cycles; also, given a
point x in the phase space, the expected length of its orbit, the expected length of the cycle in
the attractor containing x, the expected number of points from which x can be attained, etc.
Some of these figures have already been computed (for example, see [2, 3, 10]), and others
are the subject of recent studies [16].
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Appendix. Properties of Stirling numbers

Here we list the equations and definitions on Stirling numbers necessary to follow the
calculations in this paper. For a more extensive treatment see [11–13]. Stirling numbers
of the first kind are generated by the functions

z(z + 1) · · · (z + n − 1) =
n∑

m=1

(−1)n−mS(m)
n zm (A.1)

and

{ln(1 + z)}k = k!
∞∑

r=k

S(k)
r

r!
zr for |z| < 1. (A.2)

Applying the operator z d
dz

to equation (A.1) we obtain the important relation

z(z + 1) · · · (z + n − 1)

n∑
m=1

z

z + m − 1
=

n∑
m=1

(−1)n−mS(m)
n mzm. (A.3)

Stirling numbers of the first kind may be expressed in closed form by

S(n)
k =

k−n∑
l=0

(−1)l
(

k − 1 + l

k − n + l

)(
2k − n

k − n − l

)
T (1)

k−n+l

where

T (1)
p = 1

l!

l∑
k=0

(−1)l−k

(
l

k

)
kp (A.4)

are the Stirling numbers of the second kind. It is known that Stirling numbers verify the
relations

S(n)
k = 0 if k < n (A.5a)

T (1)
p = 0 if p < l (A.5b)

and
n∑

k=m

S(m)
k T (k)

n =
n∑

k=m

S(k)
n T (m)

k = δm,n. (A.5c)

By means of Stirling numbers of the first kind it is possible to express derivatives of a function
in terms of finite differences by the formula

dm

dzm
f (z) = m!

∞∑
k=m

S(m)

k

k!
�kf (z) (A.6a)

if the summation is convergent, and where �f (x) = f (x + 1) − f (x) and

�kf (z) =
k∑

l=0

(−1)k−l

(
k

l

)
f (z + l). (A.6b)
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